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ABSTIUCT 

A enifkd treatment of high energy coIIisions in QCD ia prenented. UsinS a probabilltic approach, 
we incorporate both pcrtlubative (hard) and non-pertorbative (aoft) components in a consimtent 
f&ion, leading to a “Eeterotic Pomeron” . 

1. Introduction 

One of the most striking aspects of high-energy hadron-hadron scattering is the con- 
tinued increase of the total cross section UT with the energy. There are currently two seem- 
ingly conflicting approaches to high energy hadronic collisions in QCD,“-” as summarized in 
Table-I. We would like to focus in this paper on the following questions: How can qualitative 
features of rising UT be related to aspects of QCD? Instead of treating rising c~ as m isolated 
phenomenon, can a simultaneous description of the elastic and the inelastic production be 
achieved by incorporating both perturbative and nonperturbative aspects of QCD?“’ 

It is well understood that the character of QCD changes depending on the nature of 
available probes. At short distances, the basic degrees of freedom are quarks and gluons. 
Collisions involving large momentum transfers, “hard” collisions, csn be understood in terms 
of exchangea of quarks and gluons Thue has been much recent discussions on the idea of 
“semi-hard processes” which could account for a large part of the total cross section at collider 
energies, with the energy dependence of various cross sections explained by perturbative QCD 
motivated calculations. One usually justifies this approach by appealing to the work of the 
“Leningrad” Group.1’1 In such a scheme, a rising total cross section is achieved by having a 
“hard” Pomcron singularity, the Lipatov Pomeron, above J = 1. 

* Talk presented at XXII Int. Symposium on MnItipattide Dynamics, Santicgo, Spain, July, 1902, and at 
Workshop on Small-r and DifTractive Phydw at the Tevatton, FNAL, Batavia, IL, Sept., 1992. 
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An equally compelling argument can also be given in which the dynamical origin of the 
increasing total cross sections lies in “soft” hadronic physics. As one moves to larger distance 
scales, the QCD coupling increases and one enters the non-perturbative regime. The most 
promising analytic tool for a non-perturbative treatment of QCD which builds in naturally 
quark-&ion confinement remains the large-N expansion. In this scheme, model studies suggest 
that the effective degrees of freedom of QCD can most profitably be expressed in terms of 
“extended objects”. Indeed, low-lying hadron spectrum suggests that they can be understood 
as “string excitations”. In high-energy soft hadronic collisions”’ where the interactions are 
mostly peripheral, it is possible to “see” the dominant excitation in terms of the exchanges 
of a soft Pomeron pole.[31 A successful phenomenological model of this type, particularly for 
describing production processes, is the Dual Parton Model (DPM)lr]. A rising total cross 
section also requires having a soft Pomeron above J = 1 in the forward limit, as indicated in 
the last column in Table-I. 

Rather than treating perturbative and non-perturb&iv= frameworks as diametrically 
opposite, we identify key features of each which sllow a unified treatment of high energy 
hadronic collision in QCD. One of the main puzzles for our current understanding of high 
energy hadronic collisions in QCD is the relation, if any, between the perturbative (Lipatov) 
Pomeron and the non-perturbative (soft) Pomcron!” This is precisely the subject of this talk. 
We begin by briefly reviewing features of Lipatov an soft Pomerons, both their differences 
and similarities. We next show how the key features of each can be incorporated in a unified 
treatment leading to a “Heterotic Pomeron”. 



Table I. Two Conflicting Pictures for QCD at High Energies: 

Framework: 

Emphasis: 

Graphs: 

Standard Models: 

Perturbative QCD Non-Perturbative QCD 

Hard gluons, quarks Topological expansion, etc. 

Hard&on ladders in LLA Soft ladders in l/N exp., 

cylinder topology 

Leningrad modcl[‘l Dual Parton Mode@] 

I Vacuum Exchanges: Hard Pomeron: Soft Pomeron: 

Total cross sections: 

ad ES l+ AL > 1 ao(0) E 1+ A0 > 1 

Increasing Increasing 

Virtuality: 

t-dependence: 

Increasing 4% 

am - t-independent 

q$ Sxed and small 

440) - 0.2 GeV-* 

2. Different Faces of Pomeron in QCD 

In spite of their apparently different dynamical origins, the hard and the soft Pomerons 
share a structural similarity since they are both generated by summing ladder graphs. In 
Pomeron, one deals with the hard gluon ladders, whereas the soft Pomeron involves multipe- 
ripheral ladders. In a ladder sum, one encounters amplitudes which at high energy satisfy a 
recursion relation 

AJP,~; Q) = J d4p’K(p,p’; QPL-dp’,p0; Q), (1) 

where A,,(p,po; Q) corresponds to the n-rung contribution to the absorptive part of a non- 
forward two-to-two amplitude, (p+Q/2)+(pa-Q/2) + (p-Q/2)+(po+Q/2). Let s E (~+po)~ 
and t G Q”, at high energies where s >> 111, the sum C,d+,(p,po;Q) can be shown to be 
power-behaved in s, leading to the respective Pomerons, whose properties are summarized in 
Table-I. 

Although both pictures can readily lead to increasing total cross sections: they exhibit 

* We emphasise that, with a Pomeron intercept greater than 1, (either the hard or the soft), the single- 
exchsnge contribution alone would violate unitarity at sufficiently high energies and screening corrections 
must nor be taken into account. It is reasonable to assume that this can be carded out within the context 
of a Rcggcon field theory. If the triple-Pomeron coupling ia amdl, e. generalined eikonal mechanism becomes 
operative, leading to an expanding disk picture fox the total cross section. Of course, such a representation 
can at beat be approximate, possibly meaningful for a limited range of energies, and it most likely would 
break down at asymptotic energies. Our concern here is on the nature of the Pomeron itself and we do not 
want to addreas the question on the precise nature of the screening mechanism. For simplicity, we shall 
assume that, at for the current available collider energies, an eikonsl representation is indeed operating. 



other distinctive features. Two most important one are: (i) The production mechanism for 
a hard Pomeron leads to an increase in “virtuality”, i.e., the average transverse momentum 
squared, (&) increases with logs, whereas a soft Pomeron exchange corresponds to processes 
with limited (&). (ii) The soft Pomeron has a relatively large slope at t = 0, whereas the 

hard Pomeron has a much weaker t-dependence? 

These differences could in principle allow one to decide experimentally which one of 
these two approaches is more appropriate phenomenologically. Unfortunately, clear cut experi- 
mental tests do not exist. In fact, one finds that it is possible that an additive “two-component” 
picture actually work well phenomenologicahy. However, it should be stressed that a simple 
additive approach is in principle wrong, since these two components must be coupled through 
unitarity. It is conceivable that the interference effects between them would enter only after 
absorptive corrections have been taken into account, so that it is meaningful to treat them 
additively at the level of “eikonal”. 

We emphasize that, most significantly, a “two&ton ladder” has the topology of a 
“cylinder” in the color-space, it therefore servives in the leading large-N limit. Since the 
soft-Pomeron is also supposed to represent the effective ladder graphs emerging tram the 
cylinder graphs, it suggests that, instead of simply adding, they should be treated as different 
manifestations of a more general “structure” which truly represents the asymptotic behavior of 
the cylinder graphs in QCD. We therefore would follow the following strategy for unification: 

(A) Identify “distinguishing ” features of each approach, putting aside quantitative questionsl”] 
such as the precise value for the “Lipatov Pomeron intercept”, 

(B) Provide a “consistent framework” which unifies the key features of each scheme. 

We carry this out next by introducing a probabilistic model. 

3. Key Features and Random Walks 

Let us return to the recursion relation, Eq. (1). At high energies where a >> ItI, 
p and po can be decomposed into longitudinal and transverse components. Whereas the 
longitudinal components detemine 3, their transverse compon:nts, &, determine the virtuality 
of the process. In this limit, Q is also tranverse, i.e., Q + QT and t N -@$. Upon taking a 

two-dimensional Fourier transform with respect to &, (1) can be written as 

d’b’K(s’/s;&&;ii- bl)d,z-&‘,&;g). (2) 

At high energies, for both cases, the kernel of this recursion relation simplifies which allows a 
probabilistic interpretation in terms of a “random walk” picture. 

t Depending on the approximation used, the hard Lipatov Pomcron can either be a fired cut or a series of 
poles accnmulating above j = 1. For our qualitative discussion, we assume that it can be treated as an 
effective t-independent J-plane singularity. 



We begin by first working out the example of a one-dimensional random walk, which is 
specified by a normalized elementary one-step probability distribution, ~~m~(~)d~ = 1. The 
(relative) probability distribution after n steps in T is then related to that for n - 1 steps 
by a linear relation, q,,(r) = ST= dT’w(r - r’)‘@,-l(r)). We assume w(r) = w(-r) so that 

(r)r = sy.m~w(r)dr = 0. It follows that (r),, = 0 and (r’), increases with u, the number of 

steps taken. Simple examples for W(e) are step-function, $9(x - ITI), gaussian, -&e-v’iA’, 

and exponential, &e-Irl/h. 

For n large, we can treat the relative probability as continuous in n, i.e., ‘l?,,(r) -+ 
4!(n,r). Since the dominant contribution to the recursive integral comes from the region 
where r N r’, we can expand the integrand about (n,~), and obtain a diffusion equation 

fl~at;nD;y~~(*‘,l 
where the “diffusion coefficient” is related to the elementary one-step 

r-1 . 

A directed random walk corresponds to a situation where w(y) = 0 for y < 0 so that 
X G (y)l = Jo” yw(y)dy # 0 and the relative probability after n steps satisfies the recursion 
relation, V!“(y) = J,‘dy’w(y - y’)‘Bn-~(y’). A simple consequence of a directed random walk 
is the fact that the distribution in the number of steps taken in reaching a large and iixed 
distance, Y, is Poisson-like. For instance, in the case of an exponential step distribution, 
(l/A)e-“/‘13(y), one has Qa+r(y) = (y”/Xnf’n!)e-r/X, 1 es di ng to the result that the average 
number of steps taken, the average multiplicity, equals to the distance travelled devided by 
the average one-step length, (n) = y/(y)1 = y/X. 

Let us next consider a two-dimensional walk in which W(T, y) - w,(t)wv(y) where only 
the walk in the y-direction is directed, i.e., We = w,(-r) and w”(y) cc 0(y). The joint 
probability now satisfies the recursion relation 

!l!,,(z, y) = 7 dr’ j dy’w(r - P’, y - y’)‘P,,-,(r’, y’). 

-00 0 
(3) 

Treating V!Jr,y) as continuous in u for n large and expanding the integrand in (3) about 
(n,r,y), one obtains a generalized diffusion equation 

W%CY) 
Bn 

= xwv.Y) + D +q%TIY) 
%Y r 23% . 

We next demonstrate that the structure of both the hard and the soft Pomerons can 
be interpreted as simultaneous random walks in appropriate spaces. Concentrating first on 
the hard Pomeron, where Eq. (2) corresponds to the celebrated Lipatov equation. The most 
remarkable feature of this equation is the fact that it is not infrared singular, i.e., the kernel is 
regular at pi = qh, in spite of the fact that various individual terms contributing t the kernel 
are singular. Much recent discussions have focused on the detailed structure of this equation, 
e.g., the precise intercept of the Lipatov Pomeron under a variety of physically motivated 



modifications to this equation.161 Although these are extremely interesting questions, for our 
present purpose, we only need to identify certain qualitative features of the Lipatov equation. 

Introducing rapidities y = logs, y’ = logs’, and T = log(q~/q~), T’ = log(q’i/q$): the 
angular part of & can be integrated out, and, (2) becomes 

&‘)(y,r,i) N dr’KL(y - y’;r - T')@~(Y',T'; b’,. (5) 
0 --QD 

The Lipatov kernel is factorizable, K&(y - y’; T - P’) N &,(y - y’)Vh(~ -T’), where &(y) N er 
and thz Fourier transform of V$(T), denoted by x(v), is analytic for 1Imvj < l/2. The absence 
of the &ntegration, which is an aproximation, reflects the fact that the Lipatov kernel for (I) 
asymptotically has a weak t-dependence. 

Observe that, Eq. (5) is structurally similar to (3). (By dividing an appropriate power 
of 8, Q~+~~(‘), it is possible to normalize the kernel KL so that jdy JdrKL(y,r) = 1. Indeed, 
one finds that ark e 1 + AL(O), A(O)L a x(O), is precisely the Lipatov Pomeron intercept.) 
Therefore, the properties of the hard Pomeron can be understood in terms of a simultaneous 
random walk in “rapidity” and “log of virtuality”, as summarized in Table-II. In particular, 
we emphasize that diffusion in the r-space can be described by an equation like (4): 

a%bcT,Y) 
Bn 

= p('&*Y) + D @wbGCY) 

BY ? 8% ' 

which leads to a spread in virtuality with increasing rapidity: (8) N eCoMt.n, However, a 
hard Pomeron does not lead to diffusion in the impact parameter space. 

Table II. Hard and Soft Pomerons as Random Walks: 

Hard Pomeron Soft Pomeron 

Rapidity: y = log 8 Directed-random-walk Directed-random-walk 

Log of Virtuality: Random-walk, No, 

+ = k(&& Diffusion. q$ fixed and small. 

Impact parameter: b’ No, Random-walk, 

a’ (approx.) Sxed. Diffusion. 

* We have introduce here a scale, qo, below which the LLA used for deriving the Lipatov equation is ques- 
tionable. We can use this (UI P. cutoff below which a non-pcrturbative description must been used. However, 
this will not affect the key “diffusion” feature which we would like to identify nut. 



We will be more sketchy for the case of a soft Pomeron. Note that, by definition, a 
soft ladder structure also involves a strong cutoff in q$, and, for simplicity, we assume that all 
9;‘s are of the order qi. The kernel must also be cutoff in t, thus leading at high energies to 
a recursion relation 

Y 

d-lqY,d) = 
J J 

dy’ d’b’K,(y - y’; ii-- i’)@,(y’, TO; a’), 

0 

where TO N 0. That is, a soft Pomeron corresponds to a simultaneous random walk in the 
rapidity and the impact parameter space, as su mmarized in Table-II. Under a factorizable 
approximation, one has K,(y - y’; a’- a) II R,(y - y’)l,(g- a), where R,(y) - ew and I,(@ 
decreases rapidly for B” large. Instead of (6), for n large, 

W~,a’,%Y) 
Bn 

=A W~A~OrY) 
a 

BY 
+ =~V%,&Q,Y), 

where the diffusion coefficient I)b is related to the one-step fluctuation in ba. This diffusion 
leads to (b’) cc logs, which, when translated back into t, corresponds to the well-known 
shrinkage of the forward peak due to the exchange of a soft Pomeron. 

4. Unifkation and Heterotic Pomeron 

We are now in the position to construct a model which incorporates both diffusion 
in virtuality, (6), and diffusion in impact parameter, (8). Note that, whereas diffusion in r 

. 
can take place at any fixed value of b, diffusion in impact parameter space in a soft process 
can take place only at small virtualit;, TO 2: 0. This can be realized in a two-channel simul- 
tanous random walk in the y - F - b space. Let us label the allowed channels by “s” and 
“h”, (for soft and hard respectively.) We introduce four elementary one-step distributions, 

Ki,j(y,T,Z;y’,r’,Z’), the relative probability of starting from the jth channel at y’,r’,a and 
ending in the ith channel at y, r, b after one step. 

For an ordinary random walk, Ki,j should depend only on the differences y - y’,r - 
r’, b - a. However, our situation is more restricted, e.g., a soft process can participate only 
if the virtuality is small. This can be simulated by assuming that K,,, oc S(T - TO)~(T’ - TO), 
and K,, cc S(T - rc). Similarly, the fact that very little diffusion in impact parameter takes 
place in a hard process can be simulated by assuming that Khh cc 6(:- 2) or Kh,. Lastly, 
for directed walk in rapidity, we must have Kij cc S(y - y’). That is, the desired 2 x 2 

one-step probability distributions can be chosen as K,, = g,,R,(y - y’)l,(g- @S(T - TO), 
Klh = g,h&(y - y’)&(i- @6(T - T0)6(T’ - T,,), Kh, = gh,&,(y - y’)b(ii- i?)vh(T -T’), and 
&,h = ghhRh(y - y’)6(;- bt)i’jj(T -T’), w h 
and (7) respectively. 

ere Rh and R, can be taken from that used in (5) 



Let the relative probabilities of arriving in the ith channel after TZ steps be ~(n;i)(y, T, g), 

and let ‘J!,,(y, r, g) be the two-vector with !J!~,;,l(y, r,@ and !I’(,,;hl(y, T, g) as its upper and lower 
components respectively. It follows that 

q,,(Y,d = jdy’Jdr’Jdl~X(Y,r,~Yl,r’,a)~~.-l)(Y’,r’,~), (9) 
0 

with ‘P(s;;) N Gib(y)b(r - rc)6($). W e note that, becaus of the structure of {Kii}, one always 

has @(a,,)(~, T, i) 0: S(r - TO). That is, the soft interactions take place at small virtuality only. 

It is appropriate at this point to comment that in specifying {Kij} we have introduced a 
set of symmetric “coupling matrix”, {gij}. Wh ereas g,, = O(l), the other three must be of the 
order of the QCD running coupling constant at a large virtuality, i.e., gh, cc g,h oc ghh cc O(a,). 
Note also that {Kij} are selative probabilities, no longer normalized to unity as was done 
earlier. In particular, the choice R*(y) N es and R,(y) N ~9, e N l/2, correspond precisely to 
the large energy behaviors for two-gluon and two-meson exchanges, appropriate for the hard 
and the soft processes respectively. Introduce a complex angular momentum J via a Laplace 
transform, one has &(J) = l/(J - 1) and k,(J) = l/(J - c). 

Let ‘l!(y,~,ii) = C,%i’,,(y,~,i) and d enote *(J,v, t) as its multiple-transform, (Laplace - 
in y, Fourier in r and 6). It follows from the recursion relation that a formal solution can be 
expressed as *t(J) = (I - k)-‘!Vs. We point out that the high energy behavior of q(y) will 
be controlled by the “right-most” singularity of a.(J) in the complex J plane, which is given 
by the condition det(1 - 2) = 0. 

If soft interactions were turned off, the determinantal condition would lead to the Li- 
patov Pomeron, ay, = 1 $ AL, which, as mentioned earlier, is approximately t-independent. In 
fact, the Lipatov Pomeron, without further refinements, corresponds to a fixed cut. Conversely, 
if the hard processes were turned off, one would obtain a soft Pomeron, at(t) = l+Ac(t), which 
has a “normal” t-slope in the forward region. For simplicity, we assume that 0 5 A, 5 AL = 
O(a,). In our unified treatment, a new singularity, to the right of both (XL and ~0, emerges. 
This new singularity is a simple pole, which we referred to as the “H&erotic Pomeron”. In an 
approldmate treatment, the location of the Heteroti Pomeron, a&t) ZE l+w’(t), can be found 
as the solution to the equation ,/w*(w* - A~)(u* - At(t)) = g$,G(t), where G(t) is positive 

and peaked at t = 0. Details of this analysis will be presented in a regular publication!” 

5. Discussion 

The fact that Heterotic Pomeron is a pole, with a slope of the order of that for the 
soft Pomeron, might come as a surprise to some. We will have much more to say about this 
point elsewhere. Here, we close by pointing out some potentially important consequences of 
our unified treatment of QCD at high energies. 

Since H&erotic Pomeron is a pole, a well-defined perturbative Reggeon calculus can be 
carried out. Because of the factorization property, it naturally leads to diffractive dissociation 



events, or more generally, it allows the study of “rapidity gap” physics at collider energies. We 
also mention that, in this unified treatment/‘) diffusion in virtuality becomes “limited”, the 
Heterotic Pomeron coupling to hadron is ‘soft-dominated”, and truly hard processes become 
dominant only in the region where ItI > O(loga). On a more phenomenological side, we 
mention that our treatment allows a systematic expansion of cross sections in terms of “hard” 
and “soft” events, which goes beyond the simple “additive” approach. Furthermore, since 
Heterotic Pomeron intercept is greater than one, absorptive corrections must again be taken 
into account. It thus provides a new starting point for handling screening corrections, which 
could have a profound effect on our understanding of both the near forward hadronic collisions 
and the small-s physics in deep-inelastic scattering. 
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